Skip to main content

Installing Jan using Docker

Pre-requisites

note

Supported OS: Linux, WSL2 Docker

  • Docker Engine and Docker Compose are required to run Jan in Docker mode. Follow the instructions below to get started with Docker Engine on Ubuntu.
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh ./get-docker.sh --dry-run
  • If you intend to run Jan in GPU mode, you need to install nvidia-driver and nvidia-docker2. Follow the instruction here for installation.

Run Jan in Docker Mode

Docker compose ProfileDescription
cpu-fsRun Jan in CPU mode with default file system
cpu-s3fsRun Jan in CPU mode with S3 file system
gpu-fsRun Jan in GPU mode with default file system
gpu-s3fsRun Jan in GPU mode with S3 file system
Environment VariableDescription
S3_BUCKET_NAMES3 bucket name - leave blank for default file system
AWS_ACCESS_KEY_IDAWS access key ID - leave blank for default file system
AWS_SECRET_ACCESS_KEYAWS secret access key - leave blank for default file system
AWS_ENDPOINTAWS endpoint URL - leave blank for default file system
AWS_REGIONAWS region - leave blank for default file system
API_BASE_URLJan Server URL, please modify it as your public ip address or domain name default http://localhost:1377
  • Option 1: Run Jan in CPU mode

    # cpu mode with default file system
    docker compose --profile cpu-fs up -d

    # cpu mode with S3 file system
    docker compose --profile cpu-s3fs up -d
  • Option 2: Run Jan in GPU mode

    • Step 1: Check CUDA compatibility with your NVIDIA driver by running nvidia-smi and check the CUDA version in the output
    nvidia-smi

    # Output
    +---------------------------------------------------------------------------------------+
    | NVIDIA-SMI 531.18 Driver Version: 531.18 CUDA Version: 12.1 |
    |-----------------------------------------+----------------------+----------------------+
    | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
    | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    | | | MIG M. |
    |=========================================+======================+======================|
    | 0 NVIDIA GeForce RTX 4070 Ti WDDM | 00000000:01:00.0 On | N/A |
    | 0% 44C P8 16W / 285W| 1481MiB / 12282MiB | 2% Default |
    | | | N/A |
    +-----------------------------------------+----------------------+----------------------+
    | 1 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:02:00.0 Off | N/A |
    | 0% 49C P8 14W / 120W| 0MiB / 6144MiB | 0% Default |
    | | | N/A |
    +-----------------------------------------+----------------------+----------------------+
    | 2 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:05:00.0 Off | N/A |
    | 29% 38C P8 11W / 120W| 0MiB / 6144MiB | 0% Default |
    | | | N/A |
    +-----------------------------------------+----------------------+----------------------+

    +---------------------------------------------------------------------------------------+
    | Processes: |
    | GPU GI CI PID Type Process name GPU Memory |
    | ID ID Usage |
    |=======================================================================================|
    • Step 2: Visit NVIDIA NGC Catalog and find the smallest minor version of image tag that matches your CUDA version (e.g., 12.1 -> 12.1.0)

    • Step 3: Update the Dockerfile.gpu line number 5 with the latest minor version of the image tag from step 2 (e.g. change FROM nvidia/cuda:12.2.0-runtime-ubuntu22.04 AS base to FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS base)

    • Step 4: Run command to start Jan in GPU mode

      # GPU mode with default file system
      docker compose --profile gpu up -d

      # GPU mode with S3 file system
      docker compose --profile gpu-s3fs up -d

This will start the web server and you can access Jan at http://localhost:3000.

warning
  • RAG feature is not supported in Docker mode with s3fs yet.