Installing Jan using Docker
Pre-requisites
note
Supported OS: Linux, WSL2 Docker
- Docker Engine and Docker Compose are required to run Jan in Docker mode. Follow the instructions below to get started with Docker Engine on Ubuntu.
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh ./get-docker.sh --dry-run
- If you intend to run Jan in GPU mode, you need to install
nvidia-driver
andnvidia-docker2
. Follow the instruction here for installation.
Run Jan in Docker Mode
Docker compose Profile | Description |
---|---|
cpu-fs | Run Jan in CPU mode with default file system |
cpu-s3fs | Run Jan in CPU mode with S3 file system |
gpu-fs | Run Jan in GPU mode with default file system |
gpu-s3fs | Run Jan in GPU mode with S3 file system |
Environment Variable | Description |
---|---|
S3_BUCKET_NAME | S3 bucket name - leave blank for default file system |
AWS_ACCESS_KEY_ID | AWS access key ID - leave blank for default file system |
AWS_SECRET_ACCESS_KEY | AWS secret access key - leave blank for default file system |
AWS_ENDPOINT | AWS endpoint URL - leave blank for default file system |
AWS_REGION | AWS region - leave blank for default file system |
API_BASE_URL | Jan Server URL, please modify it as your public ip address or domain name default http://localhost:1377 |
-
Option 1: Run Jan in CPU mode
# cpu mode with default file system
docker compose --profile cpu-fs up -d
# cpu mode with S3 file system
docker compose --profile cpu-s3fs up -d -
Option 2: Run Jan in GPU mode
- Step 1: Check CUDA compatibility with your NVIDIA driver by running
nvidia-smi
and check the CUDA version in the output
nvidia-smi
# Output
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 531.18 Driver Version: 531.18 CUDA Version: 12.1 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 4070 Ti WDDM | 00000000:01:00.0 On | N/A |
| 0% 44C P8 16W / 285W| 1481MiB / 12282MiB | 2% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:02:00.0 Off | N/A |
| 0% 49C P8 14W / 120W| 0MiB / 6144MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA GeForce GTX 1660 Ti WDDM | 00000000:05:00.0 Off | N/A |
| 29% 38C P8 11W / 120W| 0MiB / 6144MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|-
Step 2: Visit NVIDIA NGC Catalog and find the smallest minor version of image tag that matches your CUDA version (e.g., 12.1 -> 12.1.0)
-
Step 3: Update the
Dockerfile.gpu
line number 5 with the latest minor version of the image tag from step 2 (e.g. changeFROM nvidia/cuda:12.2.0-runtime-ubuntu22.04 AS base
toFROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS base
) -
Step 4: Run command to start Jan in GPU mode
# GPU mode with default file system
docker compose --profile gpu up -d
# GPU mode with S3 file system
docker compose --profile gpu-s3fs up -d
- Step 1: Check CUDA compatibility with your NVIDIA driver by running
This will start the web server and you can access Jan at http://localhost:3000
.
warning
- RAG feature is not supported in Docker mode with s3fs yet.